N89-16317 " oo

Ezperience with the CAILS

Michael F. Tighe
Intermetrics, Inc.
Cambridge, Mass.

1. Overview

Intermetrics is currently using an earlier version of the CAIS (based on CAIS 1.2) in
the implementation of it's line of Byron!/Ada? APSE products. This proto-CAIS
provides all the Byron tools, Ada compiler, linker-driver, Ada program library
manager, etcetera with a standard interface to the underlying operating system.
Written in Ada and using Ada language features to separate specification from imple-
mentation, this proto-CAIS is curreutly implemented on four different operating sys-
tems, representing two different machine architectures including

« VAX/VMS (Digital Equipment Corporation)

« MVS/370 (IBM)

« CMS/370 (IBM)

» UTS 3.5 (Amdahl UNIX? derivative running under VM on the 370).

[n progress is the task of moving the proto-CAIS (thus the Byron APSE) to the
Sperry 1100 series (a third hardware class and fifth operating system).

Intermetrics is using this technology to permit the primary development team to
proceed doing main-line development work on the Byron APSE, while rehost teams
take either source or object modules (depending on the target hardware) and install
the most recent version of the Byron APSE on these new machines for testing and

2. Ada is a registered trademark of the U.S. Government Ada Joint Program Office.

L. Byron is a registered trademark of Intermetrics, Inc.
3. VUNIX is a trademark of Bell Laboratories,

D.2.4.1

ONGINAL PAGE 18 —
OF POOR QUALITY -5

demonstration to customers. This process allows the various rehost teams to follow
the primary development team very closely, at times being only two or three weeks
behind the primary team in terms of supported capability. Each rrhost team
continues work on developing contract- or host-specific features for the rehosted
compiler.

2. Proto-CAIS Usage in the Byron/Ada Compiler

The proto-CAIS is the primary database used by the functions that implement the
Ada Program Library functions of the Byron APSE. The Program Library contains
various representations of the Ada program as the compiler translates it from text Lo
object code. The retention of these representations in the Program Library is under
user control but usually include

e an abstract syntar tree (AST),
e a Diana representation of the program,
e an internal form used for code generation {called Bill),

« and the linkable object module.

Each form of the program representation is kept for each smallest compilable unit of
the language, as the programmer can present his source to the Ada compiler in any of
a variety of sequences and portions. It is necessary to organize these representations
in an orderly fashion which is related to the name of the entity that they represent.
Additionally, there are inter-relationships between the representations. For instance.
each specific object module is derived from a correspoirding specific Bill
representation which is derived from a corresponding specific Diana representation
which in turn depends on its specific abstract syntax tree representation. Compilation
dependencies of the with statements in the source are represented as dependencies
between the corresponding Diana representations. Date,/time of compile and other
information is kept as well.

As the Ada Program Library is also a foundation for a distributed cor (uration
management system, it organizes the users compilations into collections and catalogs.
A collection is a set of catalogs, and represents a higher level of grouping than the
catalog. A catalog is a set of Ada sources (and their subsequent representations) that
represent a single unit of related work chosen by the programmer. Each compile is
made in within the context of a primary catalog which refers to various resource
catalogs. Catalogs can created at any time, or can be derived from an existing eatalog
to form a new (incremental) version of the original catalog. Additionally, resource
eatalogs can be specified as interface or implementetion eatalogs, corresponding to the
concepts of Ada spec and body. Multiple catalogs can exist as an implementation
eatalogs for a single interface catalog. At link time, the programmer is allowed 1o
choose a specifie implementation catalog to mateh a specifie interface catalog,.

Catalogs are composed of unils which represent the smallest unit of compilation.

D.2.4.2
OMGINAL PAGE 18
OF POOR QUALITY

Each unit is composed of a spec and a tody, with the possible inclusion of a subunit.
% Each spec or body is composed of the underlying representations (form) of the sourcc

(AST, Diana, Bill, Objmod).

One specific implementation detail is that all file objects (the CAIS file node), which

represent the Diana or AST or Objmod, descend from the collection. The spec and

body forms of the unit have secondary (rather than primary) links to the file nodes.

This grouping of compilation information into catalogs with all the various

- representations and attributes for each compilation unit represents the set of data
managed by the proto-CAIS. This information is stored by the proto-CAIS in
underlying host files. Each representation (AST, Diana, Bill, Objmod) of a
compilation unit is kept as a separate file on the host. Relationships and attributes

. are stored in a single database represented by three files. The accompanying
diagrams are intended to be suggestive of the use that the program library makes of
the proto-CAIS rather than an exhaustively complete example.

/
e (Cnoms)

»
& fr0nd (Crpwt>) /“]

Auu% ndas) = D0,

2 EN¢e/ .
\;{MK S,‘{g colA¢ /»wf
~

&

caraion ca)

&wn]

A5 s oucebanme)

\
)
A’f&o{::zc.uc(owma) urer o

! /.././.,m{"jﬂ

S uriemprriron C4)
Ine capomani?d |

N
(araeoi) Gamios)

KEY:
HiE NeotyPp
CHemed> ean -suu/;l (O Sucturad tode »
L . Aa._d.n] f)b neds ..‘,..(7 o Prnssed .o

{ g £ omopg 1S . / ‘

{1 rek atviba — 2~..-Z i

. b Nodk l“‘,‘s‘ - > Secon ; /“é

Satb G nan, b}
adrbald v Figure § - User to Catalog

3. Implementation Details

D.2.4.3
ORIGINAL PAGE 18
OF POOR QuALITY

- Cahl
Cdor 2
2 P77 ¢
/nm/an‘ H M :a sovir(8) ,m,,“)
wlc; LA nAaE
H/d C
/Wéud - Vlll
ﬁf,w \,
"-//; ({4
s2d &, et
Dlﬂf
s m 1 Dént VN E
Heam / / s D1asA) et (ayy) £u-(m) \ l
L, ,~7(~v " pi) ’
|

/. e coians) o ,\.u-b‘l’ .ﬁ:.(w ‘]im(;
- Bk E al AP Tt

- ant —_— Rl \ AN
(2 g —_— . N
mu,n\‘ﬁ:) #(“,‘l’) = \‘\‘\- !
= N |
— . — - .
o — —— _‘ pa— — — —— " A ‘/ ’
o rrmes oo 0 e 2ty |
“eomwr
ATy o 15/ ups8 orvs * Lnks fown fhormodat
“Zpat, vlon 8 (P A:p) " Y I (‘) i
e ana 5 U CAPIPRE R (AST) ———— st .
“Shts 3 O Se Far M
I I/Anu-o{"’“ salos doef A i jMa& o ShM o freol g5 hot

e e e] g rrTay, e

Figure 2 - Catalog Internals

Intermetrics has recently had experience in replacing the proto-CAlIS with a totally
re-written implementation to improve performance of the tuo! set using the proto-
CAIS. Preliminary performance analysis indicated that the initial implementation of
the proto-CAIS was a drain on the performance of the system, and it was targeted
for a major upgrade in performance. The entire underlying implementation of the
proto-CAIS was redesigned and reimplemented in light of the performance data, and
the new implementation is currently installed in the latest version of the Ada
compiler and its tools.

At present the new implementation is performing up to expectations with no
anomalies reported due to differences in implementation. It is important to note that
only minor changes (less than 500 lines of Ada code, excluding the new proto-CAlS
code) were made in the compiler and tool sources (400KSLOC) to allow this new
implementation to be installed. Most of these source changes were required by
changed functionality of the new implementation of the proto-CAIS which were
intended to improve performance without loss of portability. Some small number of
changes were made to clear up anomalies in the preliminary implementation and
definition of the proto-CAIS. Had no changes in lunctionality been required, there

D.2.4.4
ORIGINAL PACE 15

OF POOR QuAUITY

would have been no source changes required in the sources of the tool set.
4. Conclusion

Intermetrics experience is that the Ada package construct, which allows separation of
specification and implementation allows specification of a CAIS that is transportable
across varying hardware and software bases. Additionally, the CAIS is an excellent
basis for providing operating system functionality to Ada applications. By allowing
the Byron APSE to be moved easily from system to system, and allowing significant
re-writes of underlying code, Ada and the CAIS provide portability as well as
transparency to change at the application/operating systemn interface level.

[1.2.4.5

